3.7.86 \(\int \frac {\sqrt {c+\frac {d}{x}}}{\sqrt {a+\frac {b}{x}} x} \, dx\)

Optimal. Leaf size=93 \[ \frac {2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+\frac {b}{x}}}{\sqrt {a} \sqrt {c+\frac {d}{x}}}\right )}{\sqrt {a}}-\frac {2 \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b} \sqrt {c+\frac {d}{x}}}\right )}{\sqrt {b}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 93, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {446, 105, 63, 217, 206, 93, 208} \begin {gather*} \frac {2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+\frac {b}{x}}}{\sqrt {a} \sqrt {c+\frac {d}{x}}}\right )}{\sqrt {a}}-\frac {2 \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b} \sqrt {c+\frac {d}{x}}}\right )}{\sqrt {b}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d/x]/(Sqrt[a + b/x]*x),x]

[Out]

(2*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[a + b/x])/(Sqrt[a]*Sqrt[c + d/x])])/Sqrt[a] - (2*Sqrt[d]*ArcTanh[(Sqrt[d]*Sqr
t[a + b/x])/(Sqrt[b]*Sqrt[c + d/x])])/Sqrt[b]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 93

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 105

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Dist[b/f, Int[(a
+ b*x)^(m - 1)*(c + d*x)^n, x], x] - Dist[(b*e - a*f)/f, Int[((a + b*x)^(m - 1)*(c + d*x)^n)/(e + f*x), x], x]
 /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[Simplify[m + n + 1], 0] && (GtQ[m, 0] || ( !RationalQ[m] && (Su
mSimplerQ[m, -1] ||  !SumSimplerQ[n, -1])))

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\sqrt {c+\frac {d}{x}}}{\sqrt {a+\frac {b}{x}} x} \, dx &=-\operatorname {Subst}\left (\int \frac {\sqrt {c+d x}}{x \sqrt {a+b x}} \, dx,x,\frac {1}{x}\right )\\ &=-\left (c \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\frac {1}{x}\right )\right )-d \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx,x,\frac {1}{x}\right )\\ &=-\left ((2 c) \operatorname {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {c+\frac {d}{x}}}\right )\right )-\frac {(2 d) \operatorname {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+\frac {b}{x}}\right )}{b}\\ &=\frac {2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+\frac {b}{x}}}{\sqrt {a} \sqrt {c+\frac {d}{x}}}\right )}{\sqrt {a}}-\frac {(2 d) \operatorname {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+\frac {b}{x}}}{\sqrt {c+\frac {d}{x}}}\right )}{b}\\ &=\frac {2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+\frac {b}{x}}}{\sqrt {a} \sqrt {c+\frac {d}{x}}}\right )}{\sqrt {a}}-\frac {2 \sqrt {d} \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b} \sqrt {c+\frac {d}{x}}}\right )}{\sqrt {b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.68, size = 142, normalized size = 1.53 \begin {gather*} \frac {2 \sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+\frac {b}{x}}}{\sqrt {a} \sqrt {c+\frac {d}{x}}}\right )}{\sqrt {a}}-\frac {2 \sqrt {d} x \sqrt {c+\frac {d}{x}} \sqrt {b c-a d} \sqrt {\frac {b (c x+d)}{x (b c-a d)}} \sinh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+\frac {b}{x}}}{\sqrt {b c-a d}}\right )}{b c x+b d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d/x]/(Sqrt[a + b/x]*x),x]

[Out]

(-2*Sqrt[d]*Sqrt[b*c - a*d]*Sqrt[c + d/x]*x*Sqrt[(b*(d + c*x))/((b*c - a*d)*x)]*ArcSinh[(Sqrt[d]*Sqrt[a + b/x]
)/Sqrt[b*c - a*d]])/(b*d + b*c*x) + (2*Sqrt[c]*ArcTanh[(Sqrt[c]*Sqrt[a + b/x])/(Sqrt[a]*Sqrt[c + d/x])])/Sqrt[
a]

________________________________________________________________________________________

IntegrateAlgebraic [B]  time = 2.67, size = 442, normalized size = 4.75 \begin {gather*} \frac {c \sqrt {\frac {a}{c}} \sqrt {a x+b} \sqrt {c+\frac {d}{x}} \left (\sqrt {a x+b}-\sqrt {\frac {a}{c}} \sqrt {c x+d}\right ) \left (-2 c \sqrt {\frac {a}{c}} \sqrt {a x+b} \sqrt {c x+d}+a (2 c x+d)+b c\right ) \left (-\frac {2 c \sqrt {\frac {a}{c}} \log \left (\sqrt {\frac {a (c x+d)}{c}-\frac {a d}{c}+b}-\sqrt {\frac {a}{c}} \sqrt {c x+d}\right )}{a}-\frac {2 \sqrt {c} \sqrt {d} \sqrt {\frac {a}{c}} \tanh ^{-1}\left (-\frac {\sqrt {a} (c x+d)}{\sqrt {b} \sqrt {c} \sqrt {d}}+\frac {\sqrt {c} \sqrt {\frac {a}{c}} \sqrt {c x+d} \sqrt {\frac {a (c x+d)}{c}-\frac {a d}{c}+b}}{\sqrt {a} \sqrt {b} \sqrt {d}}+\frac {\sqrt {a} \sqrt {d}}{\sqrt {b} \sqrt {c}}\right )}{\sqrt {a} \sqrt {b}}\right )}{\sqrt {a+\frac {b}{x}} \sqrt {c x+d} \left (a \left (4 c^2 x \sqrt {\frac {a}{c}} \sqrt {a x+b}+3 c d \sqrt {\frac {a}{c}} \sqrt {a x+b}-4 a c x \sqrt {c x+d}-a d \sqrt {c x+d}\right )+b c \left (c \sqrt {\frac {a}{c}} \sqrt {a x+b}-3 a \sqrt {c x+d}\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[c + d/x]/(Sqrt[a + b/x]*x),x]

[Out]

(Sqrt[a/c]*c*Sqrt[c + d/x]*Sqrt[b + a*x]*(Sqrt[b + a*x] - Sqrt[a/c]*Sqrt[d + c*x])*(b*c - 2*Sqrt[a/c]*c*Sqrt[b
 + a*x]*Sqrt[d + c*x] + a*(d + 2*c*x))*((-2*Sqrt[a/c]*Sqrt[c]*Sqrt[d]*ArcTanh[(Sqrt[a]*Sqrt[d])/(Sqrt[b]*Sqrt[
c]) - (Sqrt[a]*(d + c*x))/(Sqrt[b]*Sqrt[c]*Sqrt[d]) + (Sqrt[a/c]*Sqrt[c]*Sqrt[d + c*x]*Sqrt[b - (a*d)/c + (a*(
d + c*x))/c])/(Sqrt[a]*Sqrt[b]*Sqrt[d])])/(Sqrt[a]*Sqrt[b]) - (2*Sqrt[a/c]*c*Log[-(Sqrt[a/c]*Sqrt[d + c*x]) +
Sqrt[b - (a*d)/c + (a*(d + c*x))/c]])/a))/(Sqrt[a + b/x]*Sqrt[d + c*x]*(b*c*(Sqrt[a/c]*c*Sqrt[b + a*x] - 3*a*S
qrt[d + c*x]) + a*(3*Sqrt[a/c]*c*d*Sqrt[b + a*x] + 4*Sqrt[a/c]*c^2*x*Sqrt[b + a*x] - a*d*Sqrt[d + c*x] - 4*a*c
*x*Sqrt[d + c*x])))

________________________________________________________________________________________

fricas [B]  time = 0.71, size = 757, normalized size = 8.14 \begin {gather*} \left [\frac {1}{2} \, \sqrt {\frac {c}{a}} \log \left (-8 \, a^{2} c^{2} x^{2} - b^{2} c^{2} - 6 \, a b c d - a^{2} d^{2} - 4 \, {\left (2 \, a^{2} c x^{2} + {\left (a b c + a^{2} d\right )} x\right )} \sqrt {\frac {c}{a}} \sqrt {\frac {a x + b}{x}} \sqrt {\frac {c x + d}{x}} - 8 \, {\left (a b c^{2} + a^{2} c d\right )} x\right ) + \frac {1}{2} \, \sqrt {\frac {d}{b}} \log \left (-\frac {8 \, b^{2} d^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, b^{2} d x + {\left (b^{2} c + a b d\right )} x^{2}\right )} \sqrt {\frac {d}{b}} \sqrt {\frac {a x + b}{x}} \sqrt {\frac {c x + d}{x}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x}{x^{2}}\right ), -\sqrt {-\frac {c}{a}} \arctan \left (\frac {2 \, a x \sqrt {-\frac {c}{a}} \sqrt {\frac {a x + b}{x}} \sqrt {\frac {c x + d}{x}}}{2 \, a c x + b c + a d}\right ) + \frac {1}{2} \, \sqrt {\frac {d}{b}} \log \left (-\frac {8 \, b^{2} d^{2} + {\left (b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2}\right )} x^{2} - 4 \, {\left (2 \, b^{2} d x + {\left (b^{2} c + a b d\right )} x^{2}\right )} \sqrt {\frac {d}{b}} \sqrt {\frac {a x + b}{x}} \sqrt {\frac {c x + d}{x}} + 8 \, {\left (b^{2} c d + a b d^{2}\right )} x}{x^{2}}\right ), \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x + {\left (b c + a d\right )} x^{2}\right )} \sqrt {-\frac {d}{b}} \sqrt {\frac {a x + b}{x}} \sqrt {\frac {c x + d}{x}}}{2 \, {\left (a c d x^{2} + b d^{2} + {\left (b c d + a d^{2}\right )} x\right )}}\right ) + \frac {1}{2} \, \sqrt {\frac {c}{a}} \log \left (-8 \, a^{2} c^{2} x^{2} - b^{2} c^{2} - 6 \, a b c d - a^{2} d^{2} - 4 \, {\left (2 \, a^{2} c x^{2} + {\left (a b c + a^{2} d\right )} x\right )} \sqrt {\frac {c}{a}} \sqrt {\frac {a x + b}{x}} \sqrt {\frac {c x + d}{x}} - 8 \, {\left (a b c^{2} + a^{2} c d\right )} x\right ), -\sqrt {-\frac {c}{a}} \arctan \left (\frac {2 \, a x \sqrt {-\frac {c}{a}} \sqrt {\frac {a x + b}{x}} \sqrt {\frac {c x + d}{x}}}{2 \, a c x + b c + a d}\right ) + \sqrt {-\frac {d}{b}} \arctan \left (\frac {{\left (2 \, b d x + {\left (b c + a d\right )} x^{2}\right )} \sqrt {-\frac {d}{b}} \sqrt {\frac {a x + b}{x}} \sqrt {\frac {c x + d}{x}}}{2 \, {\left (a c d x^{2} + b d^{2} + {\left (b c d + a d^{2}\right )} x\right )}}\right )\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d/x)^(1/2)/x/(a+b/x)^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(c/a)*log(-8*a^2*c^2*x^2 - b^2*c^2 - 6*a*b*c*d - a^2*d^2 - 4*(2*a^2*c*x^2 + (a*b*c + a^2*d)*x)*sqrt(c
/a)*sqrt((a*x + b)/x)*sqrt((c*x + d)/x) - 8*(a*b*c^2 + a^2*c*d)*x) + 1/2*sqrt(d/b)*log(-(8*b^2*d^2 + (b^2*c^2
+ 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*b^2*d*x + (b^2*c + a*b*d)*x^2)*sqrt(d/b)*sqrt((a*x + b)/x)*sqrt((c*x + d)/x)
 + 8*(b^2*c*d + a*b*d^2)*x)/x^2), -sqrt(-c/a)*arctan(2*a*x*sqrt(-c/a)*sqrt((a*x + b)/x)*sqrt((c*x + d)/x)/(2*a
*c*x + b*c + a*d)) + 1/2*sqrt(d/b)*log(-(8*b^2*d^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*b^2*d*x + (b^2
*c + a*b*d)*x^2)*sqrt(d/b)*sqrt((a*x + b)/x)*sqrt((c*x + d)/x) + 8*(b^2*c*d + a*b*d^2)*x)/x^2), sqrt(-d/b)*arc
tan(1/2*(2*b*d*x + (b*c + a*d)*x^2)*sqrt(-d/b)*sqrt((a*x + b)/x)*sqrt((c*x + d)/x)/(a*c*d*x^2 + b*d^2 + (b*c*d
 + a*d^2)*x)) + 1/2*sqrt(c/a)*log(-8*a^2*c^2*x^2 - b^2*c^2 - 6*a*b*c*d - a^2*d^2 - 4*(2*a^2*c*x^2 + (a*b*c + a
^2*d)*x)*sqrt(c/a)*sqrt((a*x + b)/x)*sqrt((c*x + d)/x) - 8*(a*b*c^2 + a^2*c*d)*x), -sqrt(-c/a)*arctan(2*a*x*sq
rt(-c/a)*sqrt((a*x + b)/x)*sqrt((c*x + d)/x)/(2*a*c*x + b*c + a*d)) + sqrt(-d/b)*arctan(1/2*(2*b*d*x + (b*c +
a*d)*x^2)*sqrt(-d/b)*sqrt((a*x + b)/x)*sqrt((c*x + d)/x)/(a*c*d*x^2 + b*d^2 + (b*c*d + a*d^2)*x))]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c + \frac {d}{x}}}{\sqrt {a + \frac {b}{x}} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d/x)^(1/2)/x/(a+b/x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c + d/x)/(sqrt(a + b/x)*x), x)

________________________________________________________________________________________

maple [B]  time = 0.10, size = 143, normalized size = 1.54 \begin {gather*} -\frac {\sqrt {\frac {a x +b}{x}}\, \sqrt {\frac {c x +d}{x}}\, \left (-\sqrt {b d}\, c \ln \left (\frac {2 a c x +a d +b c +2 \sqrt {\left (c x +d \right ) \left (a x +b \right )}\, \sqrt {a c}}{2 \sqrt {a c}}\right )+\sqrt {a c}\, d \ln \left (\frac {a d x +b c x +2 b d +2 \sqrt {b d}\, \sqrt {\left (c x +d \right ) \left (a x +b \right )}}{x}\right )\right ) x}{\sqrt {\left (c x +d \right ) \left (a x +b \right )}\, \sqrt {b d}\, \sqrt {a c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c+d/x)^(1/2)/x/(a+b/x)^(1/2),x)

[Out]

-((a*x+b)/x)^(1/2)*x*((c*x+d)/x)^(1/2)*(ln((a*d*x+b*c*x+2*(b*d)^(1/2)*((c*x+d)*(a*x+b))^(1/2)+2*b*d)/x)*d*(a*c
)^(1/2)-ln(1/2*(2*a*c*x+2*((c*x+d)*(a*x+b))^(1/2)*(a*c)^(1/2)+a*d+b*c)/(a*c)^(1/2))*c*(b*d)^(1/2))/((c*x+d)*(a
*x+b))^(1/2)/(b*d)^(1/2)/(a*c)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c + \frac {d}{x}}}{\sqrt {a + \frac {b}{x}} x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d/x)^(1/2)/x/(a+b/x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c + d/x)/(sqrt(a + b/x)*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {c+\frac {d}{x}}}{x\,\sqrt {a+\frac {b}{x}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c + d/x)^(1/2)/(x*(a + b/x)^(1/2)),x)

[Out]

int((c + d/x)^(1/2)/(x*(a + b/x)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c + \frac {d}{x}}}{x \sqrt {a + \frac {b}{x}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c+d/x)**(1/2)/x/(a+b/x)**(1/2),x)

[Out]

Integral(sqrt(c + d/x)/(x*sqrt(a + b/x)), x)

________________________________________________________________________________________